

MILE Encoder für EC 60 flat

Produkt-Information

INHALTSVERZEICHNIS

1	TECHNISCHE	DATEN	4
	1.1	Absolute Grenzdaten	4
	1.2	Elektrische Daten	4
	1.3	Winkelmessung	4
	1.4	Tiam Concorning to the concorn	
	1.5	Modification Battern	
	1.6	Massbild	5
2	SCHUTZEINR	CICHTUNGEN & ROBUSTHEIT	6
3	DEFINITIONE	N	7
4	ANSCHLUSSI		8
	4.1	Encoder	8
	4.2	Motor/Hall-Sensor	9
5	AUSGANGSB	BESCHALTUNG	10
	5.1	Hall-Sensor	10
	5.2	Encoder	10

SCHUTZMARKEN UND MARKENNAMEN

Im vorliegenden Dokument werden eingetragene Markennamen nicht mit ihrem jeweiligen Warenzeichen aufgeführt. Dabei versteht sich von selbst, dass die Markennamen (die nachfolgende Liste ist nicht zwingend abschliessend) durch Urheberrechte geschützt sind und/oder Geistiges Eigentum repräsentieren, selbst wenn ihre Warenzeichen ausgelassen werden.

Micro-Fit™ ©

© Molex, USA-Lisle, IL

MILE-Encoder für EC 60 flat – Produkt-Information



Abbildung 1 EC 60 flat mit MILE-Encoder (633399, 645106)

Der MILE-Encoder nutzt ein induktives Winkelmesssystem, um inkrementale Rechtecksignale zu generieren. Er verfügt über zwei Kanäle (A, B) mit differentiellen Signalen und steht in vier werksseitig programmierbaren Auflösungen mit 512, 1024, 2048 und 4096 Impulsen pro Umdrehung zur Verfügung.

Der Encoder ist für maximale Robustheit in Industrieanwendungen ausgelegt. Er kann in einer offenen Umgebung eines EC-Flachmotors betrieben werden und verfügt über zusätzliche ESD-Schutzschaltungen. Aufgrund der Robustheit der MILE-Technologie in Bezug auf elektromagnetische Störeinflüsse konnte der Encoder mit minimalen Änderungen der Abmessungen gegenüber einem Motor ohne Encoder in den EC 60 flat integriert werden.

Die Anschlussbelegung ist kompatibel zu den meisten maxon Kontrollern mit Encoder-Schnittstelle.

Hinweis

Die aufgeführten Daten sind rein für Informationszwecke bestimmt. Keine der angegebenen Werte oder Angaben können als Indikator einer garantierten Leistung herangezogen werden.

1 TECHNISCHE DATEN

1.1 Absolute Grenzdaten

Parameter	Bedingungen	Min.	Max.	Einheit
Versorgungsspannung (V _{cc})		-0.3	6	V
Spannung am Signalausgang (V _{signal})		-0.3	V _{cc} +0.3	V
Signalausgangsstrom (I _{signal})		-4	+4	mA
ESD-Spannung (V _{esd}), alle Pins	EN 61000-4-2		>2	kV
Lagertemperatur (T _{store})		-40	+105	°C
Betriebstemperatur (T _{amb})		-40	+100	°C
Luftfeuchtigkeit	Nicht kondensierend	20	80	%rH

1.2 Elektrische Daten

Parameter	Bedingungen	Min.	Тур.	Max.	Einheit
Versorgungsspannung (V _{cc})		4.5	5.0	5.5	V
Versorgungsstrom (I _{dd})	Ausgangs-Pulsfrequenz <100 kHz, Lastwiderstand ≥10 kΩ		15		mA
Signalausgangsstrom (I _{signal})		-4		+4	mA
Signalspannung hoch (V _{high})	I _{signal} ≤4 mA, V _{cc} =5 V	4.5	5		V
Signalspannung tief (V _{low})	I _{signal} ≤4 mA, V _{cc} =5 V		0.2	0.5	V
Flankensteilheit (t _{trans})	Anstiegszeit/Abfallzeit ChA/B/ @ Lastwiderstand 1 kΩ, C _{load} 25 pF		20		ns

1.3 Winkelmessung

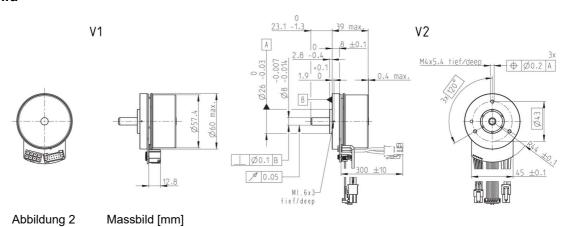
Alle Werte bei T = 25°C, n = 1000 min-1, wenn nicht anders angegeben.

→ "Definitionen" auf Seite 7

Parameter	Bedingungen	Min.	Тур.	Max.	Einheit	
Anzahl Kanäle	ChA, ChB		2		_	
Pulsfrequenz (f _{pulse})				1000	kHz	
Auflösung (N)	Signalperiode von A, B	512	1024	4096	cpt	
	N≤1024 cpt	45	90	135 *1		
Zustandslänge (L _{state})	N=2048 cpt	36	90	_	°el	
	N=4096 cpt	36	90	_		
Integrale Nichtlinearität (INL)	N≤4096 cpt		0.25	0.9	°m	
	N=512 cpt		0.06	0.4		
Wiederholgenauigkeit Winkelfehler	N=1024 cpt		0.12	0.8	LSB	
(Jitter)	N=2048 cpt		0.25	1.6	LSD	
	N=4096 cpt		0.5	3.2		

Parameter	Bedingungen	Min.	Тур.	Max.	Einheit
	N=512 cpt		0.3	0.8	
Differentialle Nightlinearität (DNII.)	N=1024 cpt		0.35	0.9	LSB
Differentielle Nichtlinearität (DNL)	N=2048 cpt		0.4	1.0	LOD
	N=4096 cpt		0.45	1.1	
Winkel-Hysterese (Hyst)	Alle Auflösungen		1		LSB

^{*1} Typischer Wert für maximale Zustandslänge


1.4 Hall-Sensor

Parameter	Bedingungen	Min.	Тур.	Max.	Einheit
Versorgungsspannung (V _{cc} Hall)	Mit ESD-Schutzdiode	4.5	5.0	18	V
Versorgungsstrom (I _{dd})	Ausgang "Hoch", d. h. Minimalstrom in Ausgang Q	0.5	3	6	mA
Signalausgangsstrom (I _{signal})	Begrenzt minimalen externen Pull-Up			12	mA
Signalspannung (V _{signal})	Ausgang Q = "Hoch"		V _{cc}	V _{cc} +0.3	V
Oignaispanning (Vsignai)	Ausgang Q = "Tief"	0	0.2	0.4	V
ESD-Spannung (V _{esd}), alle Pins	EN 61000-4-2			>2	kV
Lagertemperatur (T _{store})		-40		+125	°C
Betriebstemperatur (T _{amb})		-40		+115	°C

1.5 Mechanische Daten

Parameter	Bedingungen	Wert	Einheit
Abmessungen (→Abbildung 2)	DxH	Ø60.0 x 39	mm
Abiliessurigen (***Abbildung 2)	Seitliche Auskragung Platine (B x H)	_	111111
Trägheitsmoment der Impulsscheibe		13	g cm ²
Standard-Kabellänge		300 ±10	mm

1.6 Massbild

2 SCHUTZEINRICHTUNGEN & ROBUSTHEIT

- Ausgänge für Hall-Sensor und Encoder (Line Driver) sind mittels ESD-Schutzdioden (ausgelegt für einen ESD-Schutz von mindestens 2 kV gemäss EN 61000-4-2) geschützt.
- Ausgänge für Hall-Sensor und Encoder (Line Driver) sind zusätzlich durch Serienwiderstände von 47 Ohm, respektive 56 Ohm geschützt.
- Aufgrund des induktiven Wirkprinzips ist der Encoder immun gegen magnetische Störfelder, Staub und Schmutz.

3 DEFINITIONEN

Messwert	Definition	Illustration
Winkelfehler [°m]	Differenz zwischen gemessener und echter Winkelposition des Rotors bei jeder Position.	360° ★ Gemessener Winkel ф' [°m]
Mittlerer Winkelfehler [°m]	Mittelwert des Winkelfehlers über Anzahl Umdrehungen.	ldeal: φ' = φ
Integrale Nichtlinearität (INL) [°m]	Spitze-Spitze-Wert des mittleren Winkelfehlers.	Real: $\phi' \neq \phi$ 360° Echter Winkel ϕ [°m]
Jitter (Wiederholgenauigkeit) [°m] oder [LSB]	Sechs Standard-Abweichungen des Winkelfehlers pro Umdrehung (über eine Umdrehung, bei bestimmter Anzahl Umdrehungen). Jitter [°m] ist typischerweise unabhängig der Auflösung und gibt die maximal verwendbare Wiederholgenauigkeit für Positionierungsaufgaben an. Jitter [LSB] ist auflösungsabhängig. Bei definiertem Jitter [°m] ist der Wert ungefähr proportional zur Auflösung.	S° Winkelfehler ε [°m] So° Echter Winkel φ [°m] Mittlerer Winkelfehler (100 Umdrehungen) O.5° Echter Winkel φ [°m] O.5° Echter Winkel φ [°m]
Bit mit dem niedrigsten Stellenwert (LSB)	Minimale messbare Differenz zwischen zwei Winkelwerten bei gegebener Auflösung (= Quadcount, = Zustand).	Gemessener diskreter Winkel φ' [°m] 360° Zustandsfehler δ [LSB]
Zustandsfehler [LSB]	Differenz zwischen tatsächlicher Zustandslänge und durchschnittlicher Zustandslänge.	Nominaler Zustand : 1 LSB (qc)
Mittlerer Zustandsfehler [LSB]	Mittelwert des Zustandsfehlers über eine Anzahl Umdrehungen für jeden Zustand der Umdrehung.	Echter Winkel φ [°m] 0.5 Zustandsfehler δ [LSB] DNL [LSB]
Differentielle Nichtlinearität [DNL]	Maximaler positiver oder negativer mittlerer Zustandsfehler.	360° Echter Winkel φ [°m] Mittlerer Zustandsfehler (100 Umdrehungen)
		Nicht wiederholbar (100 Umdrehungen) 360° -0.1 Echter Winkel φ [°m]
Minimale Zustandslänge [°el]	Minimal gemessene Zustandslänge innerhalb einer Anzahl Umdrehungen bezogen auf die Pulslänge.	A
Maximale Zustandslänge [°el]	Maximal gemessene Zustandslänge innerhalb einer Anzahl Umdrehungen bezogen auf die Pulslänge.	Zeit
Minimale Zustandsdauer [ns]	Durch Chip begrenzter minimaler Abstand zwischen zwei A/B-Flanken.	Zeit Zing Angele Z
		14 14 14 14 14 14 14 14 14 14 14 14 14 1

Tabelle 1 Definitionen

4 ANSCHLUSSBELEGUNG

Maximal erlaubte Versorgungsspannung

- · Stellen Sie sicher, dass die Versorgungsspannung innerhalb des angegebenen Bereichs liegt.
- Versorgungsspannungen ausserhalb des angegebenen Bereichs oder falsche Polung zerstören das Gerät.
- Gerät nur bei ausgeschalteter Versorgungsspannung (V_{cc}=0) einstecken.

4.1 Encoder

V1	V2	Signal	Beschreibung
A1	A1	_	nicht belegt
A2	A2	V _{cc}	Anschlussspannung
A3	А3	GND	Masse
A4	A4	-	nicht belegt
A5	A5	ChA/	Kanal A Komplementärsignal
A6	A6	ChA	Kanal A
A7	A7	ChB/	Kanal B Komplementärsignal
A8	A8	ChB	Kanal B
A9	A9	internes Signal	nicht verbinden
A10	A10	internes Signal	nicht verbinden

Tabelle 2 Anschlussstecker Encoder – Anschlussbelegung

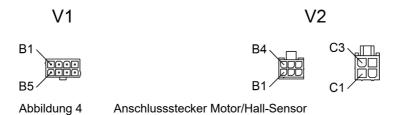

	Spezifikationen				
V1 A Anschlussstecker		Anschlussstecker	Stiftleiste, Raster 2.54 mm, 5 x 2-polig (DIN 41651/EN 60603-13)		
		Gegenstecker	Federleiste, Raster 2.54 mm, 5 x 2-polig		
V2 A		Anschlussstecker	Federleiste, Raster 2.54 mm, 5 x 2-polig (DIN 41651/EN 60603-13)		
		Gegenstecker	Stiftleiste, Raster 2.54 mm, 5 x 2-polig		

Tabelle 3 Anschlussstecker Encoder – Spezifikationen

4.2 Motor/Hall-Sensor

Der MILE auf der EC 60 flat-Platine umfasst drei digitale Hall-Sensoren zur Kommutierung. Für Technische Daten → Kapitel "1.4 Hall-Sensor" auf Seite 5, für die Ausgabeschnittstelle → Abbildung 5.

V1	V2	Signal	Beschreibung
B1	B1	Hall-Sensor 1	Hall-Sensor 1 Ausgang
B2	B2	Hall-Sensor 2	Hall-Sensor 2 Ausgang
В3	B5	V _{cc} , Hall	Hall-Sensor-Versorgungsspannung
B4	C3	Motorwicklung 3	Wicklung 3
B5	В3	Hall-Sensor 3	Hall-Sensor 3 Ausgang
B6	B4	GND	Masse Hall-Sensor
B7	C1	Motorwicklung 1	Wicklung 1
B8	C2	Motorwicklung 2	Wicklung 2

Tabelle 4 Anschlussstecker Motor/Hall-Sensor – Anschlussbelegung

	Spezifikationen				
V1	В	Anschlussstecker	Molex Mini-Fit Plus, Raster 4.2 mm, 8-polig (46015-0806)		
		Gegenstecker	Buchsengehäuse, Raster 4.2 mm, 8-polig		
V2	В	Anschlussstecker	Molex Micro-Fit 3.0, Raster 3 mm, 6-polig (43025-0600)		
	ь	Gegenstecker	Buchsengehäuse, Raster 3 mm, 6-polig		
	С	Anschlussstecker	Molex Micro-Fit Jr., Raster 4.2 mm, 4-polig (39-01-2040)		
		Gegenstecker	Buchsengehäuse, Raster 4.2 mm, 4-polig		

Tabelle 5 Anschlussstecker Motor/Hall-Sensor – Spezifikationen

5 AUSGANGSBESCHALTUNG

5.1 Hall-Sensor

Die Ausgangssignale der Hall-Sensoren sind mit ESD-Schutzdioden versehen.

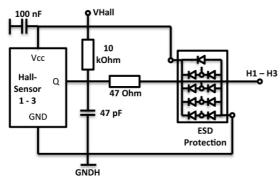


Abbildung 5 Hall-Sensor – Ausgangsbeschaltung

5.2 Encoder

Die Ausgangssignale des Encoders sind mit ESD-Schutzdioden versehen.

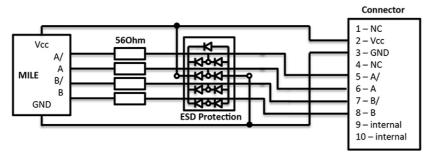


Abbildung 6 Encoder – Ausgangsbeschaltung

• absichtliche Leerseite • •

Dieses Dokument ist urheberrechtlich geschützt. Eine Weiterverwendung (einschliesslich Vervielfältigung, Übersetzung, Mikroverfilmung und sonstiger elektronischer Datenverarbeitung) ist ohne vorherige schriftliche Zustimmung nicht gestattet. Die genannten Marken gehören ihren jeweiligen Eigentümern und sind urheberrechtlich geschützt.

© 2019 maxon. Alle Rechte vorbehalten. Änderungen ohne Vorankündigung möglich.

mmag | MILE-Encoder für EC 60 flat Produkt-Information | Ausgabe 2019-12 | DocID 1877435-06

maxon motor ag

Brünigstrasse 220 +41 41 666 15 00 CH-6072 Sachseln www.maxongroup.com